
Dynamic wallet testing report

Lace wallet

Presented by:

FYEO Inc.

PO Box 147044

Lakewood CO 80214

United States

Executive Summary 2
Overview 2
Key Findings 3
Identified findings and recommendations 3

Detailed Findings and tests performed 4
Threat Modeling Methodology 4
Identified Threat Scenarios 5

Laptop stolen by malicious partner (requires physical access) 5
Hostile site executing script via xss/crssf or compromised/hacked server 5
HW wallet stolen 6
Keyboard sniffing and attacks via Other extensions? (possible bad browser
process sandboxing) 6
Social engineering / phishing attacks 6
Copy Key while in the cache of Lace and Chrome 7
Changing the destination address in the browser cache 7
Clipboard tempering tampering through malware 7
Malicious extension download - allowing code injection 8
Brute force attacks of password using OSINT to decrypt the encrypted private
key. 8

General observations 9
Leakage of key material and private keys (No findings) 👍 9
Dapp integration tests 10

Accessing the extension from iframes and clickjacking (No findings) 10
Prototype pollution (No findings) 10
Looping Initiate trust of wallet through malicious website (Medium) 11
Possible to initiate trust of wallet from non ssl encrypted sites (LOW) 11
Possible to initiate trust from private ip addresses and localhost (LOW) 13

Testing Methodology and framework 14
Overview of the framework and workflow 14

1

Executive Summary
Overview

IOHK has engaged FYEO Inc. to perform dynamic testing of potential threats to the
wallet implementation and to create a system that enables continuous security
testing of future releases of the extension.

This report is a preliminary report presented during the assessment and presents the
results of a dynamic security audit and tests performed on the wallet browser
extension.

The purpose of this audit was to evaluate the security of the wallet and ensure that it
does not leak any user secrets or expose the users of the wallet to any additional risks
that could not be identified by the code audit. The scenarios tested in the audit and
the automated tests implemented are the results of a threat modeling exercise
performed together with the team.

The assessment was conducted remotely by the FYEO Security Team. Testing took
place between December 2022 and February 2023, and focused on the following
objectives:

• To provide the customer with an assessment of their overall security posture
and any risks that were discovered within the environment during the
engagement.

• To provide a professional opinion on the maturity, adequacy, and efficiency of
the security measures that are in place.

• To identify potential issues and include improvement recommendations
based on the results of our tests.

This report summarizes the engagement, tests performed, and findings. It also
contains detailed descriptions of the discovered vulnerabilities, steps the FYEO
Security Team took to identify and validate each issue, as well as any applicable
recommendations for remediation.

2

Key Findings

The security audit and automated tests did not yield any high severity findings, and
the wallet was found to be securely implemented with no significant vulnerabilities.

● The wallet does not leak any user secrets, and user data is protected through
the use of strong encryption algorithms.

● Some potential weaknesses were detected in the way the wallet interacts with
the web. E.g., web3 interface

● These medium risk vulnerabilities could lead to users of the wallets being the
target of fraud and other indirect risks to wallet users

● The team has acknowledged these vulnerabilities and are working to
remediate them in an upcoming release

Identified findings and recommendations

The following issues have been identified during the testing period. These should be
prioritized for remediation to reduce the risk they pose. All of the identified potential
vulnerabilities were related to the Dapp integration

Dapp integration

● Possible to loop trust of wallet through malicious website - Medium
● Possible to initiate wallet trust from non ssl encrypted sites - Medium
● Possible to initiate trust of wallet from private ip addresses - Medium
● Lack of blacklist for malicious sites - Informational

3

Detailed Findings and Tests Performed

Threat Modeling Methodology

The threat modeling exercise is a process by which potential threats, such as
structural vulnerabilities or the absence of appropriate safeguards, can be identified,
enumerated, and mitigations can be prioritized.

The purpose of this threat model analysis is to provide defenders (product owners)
with a systematic analysis of what controls and defenses need to be included given
the nature of the system, the probable attacker's profile, the most likely attack
vectors, and the assets most desired by an attacker.

The source used to produce this document has been a workshop between the
consultants from FYEO Inc. together with the stakeholders from IOHK.

The goals of this exercise were:

1. To get a better understanding of the functionality and the components of the
system

2. To identify the most likely and most significant threats to the solution and
prioritize them

3. To identify which threats could and should be verified via functional testing of the
extension

During the threat modeling workshop, a simplified version of the
industry-standard methodology of threat modeling as described by
Microsoft was used.

4

Identified Threat Scenarios

Here we list the potential threat scenarios that were identified during the threat
modeling and how the scenario was translated into tests.

Laptop stolen by malicious partner (requires physical access)

An attacker with physical access can recover decryption keys for hard drive
encryption by dumping the RAM of a computer while the system is running and the
hard drive is mounted. This technique is known as a "cold boot attack" and it can be
used to extract sensitive information from the computer's memory, including
encryption keys and other secrets.

Even if the laptop or end device was stolen or acquired by a threat actor it would still
not be possible to extract the private key from the end device. This was proven by
implementing tests to dump the physical memory of the machine. This simulated
cold boot attacks and several other attack scenarios.

During the tests, no critical information, such as, private keys or mnemonics, were
found in the analyzed ram of the target machine

Hostile site executing script via xss/csrf or compromised/hacked
server

An attacker can execute code on a victim's browser through a variety of techniques,
including cross-site scripting (XSS) and cross-site request forgery (CSRF) attacks, as
well as, compromising a server or website.

Here's how each of these techniques can be used to execute code on a victim's
browser:

1. Cross-site scripting (XSS): In an XSS attack, an attacker injects malicious code
into a website that is then executed by a victim's browser. This can be done
through vulnerabilities in the website's code, such as input validation errors or
unsecured user input fields. Once the victim visits the compromised website,
the attacker's code is executed on their browser, allowing the attacker to steal
sensitive information or perform other malicious actions.

2. Compromised server or website: An attacker can also compromise a server or
website and use it to deliver malicious code to a victim's browser. This can be
done through a variety of techniques, such as exploiting vulnerabilities in the

5

server's code or using social engineering to trick a legitimate user into
providing access to the server. Once the attacker has control over the server or
website, they can deliver their malicious code to any visitors to the site,
potentially executing code on the victim's browser.

In this case, potential vulnerabilities have been identified that make it possible for an
attacker to initiate transactions as well as initiate trust from the compromised site.

HW wallet stolen

If the hardware wallet is stolen, that is a risk to the end user, however, the wallet is
protected by pincode and the mnemonic of the hardware wallet would be needed to
sync that hardware wallet to a new instance of the extension. These tests have been
implemented and no vulnerabilities have been identified that make it possible to use
a stolen hardware wallet without knowing the seed phrase.

Keyboard sniffing and attacks via Other extensions? (possible bad
browser process sandboxing)

There has historically been a number of rogue chrome extensions that have been
spying on other extensions and user activity. This is a likely scenario and therefore
tests were implemented to simulate a user keyboard sniffing the tab context to
simulate keyboard sniffing from another chrome extension. While the attack is still
possible, it is only possible to sniff the keyboard strokes from the browser tab context
and not from other chrome extensions. This makes this attack vector unlikely since
the critical information, such as, password, mnemonic, etc. is inputted into the
chrome popup directly.

Social engineering / phishing attacks

Social engineering attacks and phishing emails leading to malicious websites are a
common way to defraud crypto and wallet users. As an example, in a similar domain
attack, an attacker registers a domain name that is very similar to a legitimate
website, but with a slight variation in spelling or domain extension. For example, they
may register "gooogle.com" instead of the legitimate "google.com." The attacker
then creates a fake page on the similar domain that looks identical to the legitimate
site, and sends phishing emails or social media messages to victims, urging them to
visit the fake page and enter their credentials and/or connect their wallet.

6

Here, some of the identified potential weaknesses in the Dapp integration makes
these attacks possible and likely.

Copy Key while in the cache of Lace and Chrome

As an attacker with total control of the users machine, it is possible to access the
RAM of the browser process and read the Random Access Memory of the browser to
access the javascript heap where the unencrypted master key resided at the time of
signing.

While this attack is indeed possible, it is a very unlikely attack and the extension
protects the decrypted key and keeps it in RAM for as short of a period of time as
possible implementing adequate security protection against these sorts of attacks.
Our implemented tests show that these types of attacks are highly unlikely to
succeed and would require a very advanced malware to implement continuous
scanning of RAM.

Changing the destination address in the browser cache

Web cache poisoning is an attack that exploits vulnerabilities in a web application's
caching mechanisms to inject malicious content into a site's cache, which can then
be served to users who visit the site. The goal of a web cache poisoning attack is to
trick users into executing arbitrary code or divulging sensitive information.

While potentially possible, this type of attack is hard to test for and it would require
that the attacker has full access to the browser cache of the victim’s machine. So this
problem is more a problem for the 3rd party Dapp sites where they could be
vulnerable to cache poisoning attacks if loaded via web caches, etc.

Clipboard tempering through malware

Clipboard tampering attacks are a type of cyber attack that exploit the clipboard
feature in a user's operating system to steal sensitive information or inject malicious
content into a user's device. When the user copies something to their clipboard, such
as a password, cryptocurrency wallet address, or other sensitive information, the
attacker's code intercepts and modifies the clipboard data and replaces the
legitimate data with their own malicious content in this case the wallet address with
their own wallet address, which can result in the user unknowingly sending
cryptocurrency to the attacker.

7

These attacks are possible in the Dapp integration tests, but the user still has to verify
the transaction inside the wallet before signing so this protection is deemed
adequate to protect the end users against these sorts of attacks.

Malicious extension download - allowing code injection

This is still a likely scenario that someone clones the wallet and modifies the code of
the original repo and implements additional code to capture user secrets. This is
something that has been plaguing other wallet extensions and is a likely scenario for
an attack against this extension as well. Here, we recommend that the developers
continuously monitor the app stores in chrome and other targeted browsers to
quickly and swiftly detect malicious versions of the app and thereby swiftly be able to
identify and take down the malicious software before it can cause harm to the end
users. However this is an indirect risk and not something that the extension can
protect against directly.

Brute force attacks of password using OSINT to decrypt the
encrypted private key.

An offline brute force attack is a type of cyber attack in which an attacker attempts to
crack a password or encryption key by repeatedly guessing different combinations of
characters until the correct one is found. Unlike online brute force attacks, which rely
on attempting to guess passwords or keys using a live connection to a server, offline
attacks typically involve downloading a file or database containing encrypted
passwords, and then using specialized software to test every possible combination of
characters until the correct password or key is found.

Our tests indicate that this is a likely attack against the end users of the system, but
the extension has implemented an encryption algorithm that is well suited to make
such attacks time consuming and expensive for the attacker.

8

8

General observations

Based on the results of the security audit, it can be concluded that the Lace Wallet
browser extension is securely implemented and does not leak any user secrets. The
wallet implements appropriate security measures to ensure the confidentiality and
integrity of user secrets. The wallet can be considered secure for use by users who
need to store and manage their crypto assets.

Leakage of key material and private keys (No findings)

FYEO has implemented automated tests to detect the leakage of any private or
confidential key material or password. The tests were performed by the following
steps:

1. Remote controlling the browser in a virtual machine via a chrome driver
framework

2. Navigating to the browser extension and creating a new wallet from seed
phrase

3. Dumping the memory of the virtual machine
4. Analyzing the memory dump with regular expressions and making sure that

after locking the wallet no trace can be found of
a. Private key in binary nor text form
b. Encryption key material for locally stored private key
c. Password used by the created wallet
d. Mnemonic phrase used to initiate the wallet

9

Dapp integration tests

FYEO has written several scripts to test the functionality of the Dapp integration
between the browser and the wallet extension. In general, the wallet extension is
conforming to the standards as specified.

Accessing the extension from iframes and clickjacking

No findings

Several other browsers’ wallets have had vulnerabilities and problems when loading
the wallet extension from an iframe that is injected into the current site. This
extension, however, did not export the API interface to the user if loaded from inside
an iframe.

Prototype pollution

No findings

Prototype pollution is a vulnerability in JavaScript that can lead to unexpected or
malicious behavior in web applications. It occurs when an attacker is able to modify
the prototype object of a constructor function, thereby altering the behavior of all
objects created from that constructor. This can lead to a wide range of attacks,
including cross-site scripting (XSS), privilege escalation, and denial of service.

All of the test cases written for these attacks failed since the application is written in
Typescript and all input data that passes the security barrier between the tab context
and the extension context were securely implemented using Typescript

10

Looping Initiate trust of wallet through malicious website

Severity: Medium

FYEO found that the wallet extension repeatedly pops up for the same web page
even if the user has explicitly canceled the trust initiation. This can lead to a
vulnerability if a malicious website or phishing site constantly opens the extension
trust modal until the user accepts the connection.

Fraudsters often use popups that loop until the user takes the desired action as a
way to trick users into performing certain actions, such as downloading malware or
providing sensitive information. These pop-ups can be extremely persistent and
difficult to close, which can make users feel trapped and more likely to take the
desired action.

If the user attempts to close the popup, the fraudster may use the identified
vulnerability to make the popup reappear immediately after being closed.

Recommendations

We recommend that the application implements protection against these kinds of
attacks. Several competing wallets have implemented protection against these types
of phishing and malware attacks by implementing either blacklists and or keeping a
state inside the app that keeps track of which sites the users have already declined
an trust request.

11

Possible to initiate trust of wallet from non ssl encrypted sites

Severity: Low

FYEO has found that it is possible to initiate a trust of the wallet from a non SSL
encrypted website.

Sending sensitive data to a non-SSL encrypted website can have serious security
implications. When data is transmitted over the internet, it is susceptible to
interception and eavesdropping. Without SSL encryption, the data can be read and
even modified by anyone who can intercept the communication, such as attackers
or malicious actors.

While being a useful feature for development and testing, this is a high risk if the
trust is established on a production network where transactions have monetary
value.

Recommendations

We recommend that the application checks whether the site is https encrypted and
if not and the wallet is connected to the main net and not the pre production or the
test network that the extension at least show an extra warning modal explaining to
the user that this is very high risk associated with trusting a non encrypted site on
the production network

12

Possible to initiate trust from private ip addresses and localhost

Severity: Low

Assigning trust to private IP address ranges can pose several security problems,
Private IP address ranges are commonly used within local area networks and are not
intended to be used as a means of authentication or authorization.

Lack of Authentication and Authorization: Using private IP address ranges as a
means of authentication or authorization does not provide any form of real
authentication or authorization since there are multiple addresses in existence.

Internal addresses are also Vulnerable to ip spoofing and arp cache poisoning on the
local network especially if not encrypted with https.

This means that anyone with access to the network can potentially access the
resources or services and exploit the wallet trust barrier to the Dapp.

Recommendations

We recommend that the application checks whether the site is a private ip and if
and the wallet is connected to the main net and not the pre production or the test
network that the extension at least show an extra warning modal explaining to the
user that this is very high risk associated with trusting a non public site on the
production network

13

Testing Methodology and framework

The testing methodology and framework are published under the the FYEO gitlab
repository and will be cloned at the end of the assignment to into a new repository
provided by the client

https://gitlab.com/f.y.e.o/automated-extension-testing

Overview of the framework and workflow

The framework functions by the following pipeline

1. Set global parameters needed to build the extension
2. Build the extension
3. Starts a virtual machine
4. Starts a remote chrome browser with the extension loaded
5. Executes the test scripts through nightwatch
6. Collects evidence from the execution environment including log files and

memory dumps
7. Generate issues in gitlab if any issue is encountered within the test

More details about the testing framework and how to operate it can be found in the
readme.md file in the repo.

https://gitlab.com/f.y.e.o/automated-extension-testing#how-does-this-work

All the hardware wallet tests that were originally out of scope were not possible to
perform using the automated system since the wallet needed physical interaction. I.e
pin codes and due to the fact that USB devices could not be connected to the virtual
machines remotely. Therefore these tests were performed locally using a raspberry pi
and a SSH connection and manual triggering of the memory dump etc.

14

https://gitlab.com/f.y.e.o/automated-extension-testing
https://gitlab.com/f.y.e.o/automated-extension-testing#how-does-this-work

15

